

Express PRA for Homona magnanima

- Interception -

Julius Kühn-Institut, Institute for National and International Plant Health Date: 06/06/2024. Scientist: Gritta Schrader

Inititation: Interceptions in Baden-Württemberg of *Taxus* from Takatsuki, Japan, in Brandenburg of *Taxus cuspidata* and in North Rhine-Westphalia of *Pinus thunbergii*, both from Yokohama, Japan.

Express Pest Risk Analysis	H	omona magnanima D	liakonoff
Phytosanitary risk for Germany	high 🗌	low – me	dium 🖂
Phytosanitary risk for EU MS	medi	um – high 🖂	low 🗌
Certainty of assessment	high 🗌	medium 🖂	low 🗌
Conclusion	The Oriental ter does not occur annexes to Rey <i>Homona magn</i> but also many trees, roses, rh olive trees and <i>Podocarpus ma</i> damaged. The feed on the me cause damage It cannot be ex outdoors at lea climatic conditi more southern Due to its high its high degree significant phyt Member States Based on this n <i>magnanima</i> caus be taken to pre quarantine pes (EU) 2016/203	a tortrix <i>Homona magna</i> in the EU. So far, it is ne gulation (EU) 2019/2072 <i>anima</i> infests tea plants other host plants, such a indodendron, avocados, ginkgo. In addition, coni <i>acrophyllus</i> can be infest larvae spin neighboring isophyll of the rolled-up le to fruit. cluded that <i>H. magnanin</i> st in warmer areas in Ge ons; establishment in oth EU Member States is po damage potential for var of polyphagy, <i>H. magna</i> iosanitary risk for Germa s. risk analysis, it is assume n establish in Germany of e significant damage. The event the risk of introducin t in accordance with Artio 1.	nima, native to Japan, pither listed in the nor by EPPO. (<i>Camellia sinensis</i>), s apple and pear grapes, eggplants, fers such as ted and severely leaves together and eaves. They can also na can establish ermany due to suitable her, in particular in ossible. rious host plants and nima represents a ny and other EU ed that <i>Homona</i> or another Member hus, measures should ng this potential cle 29 of Regulation
Preconditions for an Express PRA fulfilled?	Yes, the Orient and can cause	al tea tortrix so far does damage to various host	not occur in the EU plants.

Express Pest Risk Analysis	Homona magnanima Diakonoff
Taxonomy, common name, synonyms	Lepidoptera, Tortricidae, <i>Homona, Homona magnanima</i> Diakonoff
	Photos: http://www.jpmoth.org/Tortricidae/Tortricinae/Homona_magna nima.html
EPPO Code	НОМОМА
Does a relevant earlier PRA exist?	No, only the previous version of this PRA (in German).
Distribution and biology	Japan, China, Taiwan, North Korea, South Korea (CABI, 2020), Vietnam (Razowski, 2008).
	Generally, <i>H. magnanima</i> has four generations, in warmer areas also five. <i>Homona magnanima</i> overwinters as a larva, a diapause does not occur according to CABI (2020). Yasuda (1972), on the other hand, states that <i>H. magnanima</i> enters diapause in the 4th or 5th larval stage, but does not create a hibernaculum and may continue to feed on warm winter days. The adults only fly, mate and oviposit in the evening. Mating begins 2 days after hatching and oviposition starts the following day. The lifespan of the adults is about 10 days in spring and 8-9 days in summer. A single female lays about 3- 5 egg clusters with an average of 144 eggs per cluster, in total around 400-700 eggs. The larvae hatch after about 7-8 days in summer and 12-13 days in spring or autumn. The young larvae are very active and start moving and spreading soon after hatching. The larval period lasts on average 30 days and the pupal period about 7 days. Temperature has an impact on the growth rate of <i>H. magnanima</i> . The development rate of larvae and pupae increased up to 28°C, but decreased at 30°C (Mao und Kunimi, 1990).
	Studies predicting the impact of global climate change on <i>H.</i> <i>magnanima</i> in Kagoshima Prefecture in south-western Japan showed that a 2°C increase in average temperature between 1968 and 1998 had an impact on the phenology and abundance of the pest. The higher average temperature led to an early emergence of <i>H. magnanima</i> compared to previous years; the number of generations also increased (Yamaguchi et al., 2001).
Are host plants present in the PRA area? If so, which?	Yes. The Oriental tea tortrix is very polyphagous. According to Yasuda (1972) it can attack 35 genera from 26 families (both gymnosperms and angiosperms), according to Noguchi

.

Express Pest Risk Analysis	Homona magnanima Diakonoff
Express Pest Risk Analysis	Homona magnanima Diakonoff (1990) it attacks 29 families and 31 species. The closely related species Homona issikii, on the other hand, only infests conifers (but apparently restricted to Cryptomeria fortunei and C. japonica). In detail: CABI (2020) lists Arachis (peanuts), Camellia sinensis (tea), Chrysanthemum indicum (chrysanthemums), Citrus, Diospyros kaki (kaki, persimmon), Eurya, Glycine, Lithocarpus edulis, Malus domestica (apple), Nandina domestica, Paeonia, Paulownia tomentosa, Podocarpus (yew), Prunus, Prunus avium (sweet cherry), Pyrus (pears), Rhododendron, Rosa, Solanum melongena (eggplant) as host plants, all or almost all of which occur in the PRA area as ornamentals or crop plants. Nishi et al. (2019) also name Persea americana (Avocado) as a host plant, Meijerman and Ulenberg (2000) and Yasuda (1972) list additionally Abies firma, Camellia japonica, Castanopsis sp., Cinnamomum camphora, Citrus unshiu, Cleyera japonica, Euonymus japonica, Glochidion obovatum, Glycine max, Ilex crenata, Juglans ailanthifolia, Larix leptolepis, Ligustrum japonicum, Malus pumila, Melia azedarach, Metasequoia glyptostroboides, Myrica rubra, Olea europeae, Paeonia suffroticosa, Pieris japonica, Pittosperum tobira, Podocarpus macrophyllus, Podocarpus nagi, Prunus persica, Prunus x yedoensis, Punica granatum, Pyrus simoni, Quercus
	phillyraeoides, Quercus acutissima, Quercus variabilis, Rosa, Rhus japonica, Salix sp., Taxus cuspidata (see also reason for two of the interceptions), Vaccinium bracteatum, Vitis, Viburnum awabuki and Wisteria floribunda. Jinbo et al. (2014) also mention Cinnamomum tenuifolium, Hedera rhombea, Ligustrum lucidum, Neolitsea sericea, Rhododendron x pulchrum 'Oomurasaki', Stauntonia hexaphylla and Zanthoxylum piperitum. Wenling (2019) also lists Hibiscus mutabilis, Photinia x fraseri, Phoebe zhennan and Quercus serrata. Homona magnanima also attacks Osmanthus fragrans (Nohira and Awano, 1977), Ginkgo biloba (Lin et al., 2022), and Gardenia jasminoides (Kanaya et al. 2024). In Korea, H. magnanima is an important pest of olive trees (medium to high occurrence, severe damage to shoots and leaves; Choi et al. 2023). According to the Nara Prefectural Agricultural Experiment Station (1975), it also damages Photinia glabra, Laurus nobilis, Rhaphiolepis indica, Quercus glauca, and Lagerstroemia indica.

. .

.

. .

. .

1

Express Pest Risk Analysis	Homona magnanima Diakonoff
Transfer from consignment to host plant	Larvae are very polyphagous (number and diversity of host plants) and very active, and adults are good flyers (CABI, 2020). Therefore, transfer from the consignment to host plants is possible.
Is a vector/ further plant needed for host alternation? Which? Distribution?	No.
Climate in distribution area comparable to PRA area?	Yes. The moth occurs from temperate to tropical zones (Sato et al. 1980), in Japan everywhere except Hokkaido (Noguchi, 1990). The climate in the areas where <i>H. magnanima</i> is present corresponds primarily to the Köppen-Geiger climate zones Cfa and Cfb; it is temperate, warm temperate to subtropical (e.g. Japan: Kantō region on Honshu: temperate; Nara Prefecture: warm temperate, Kagoshima on Kyushu: subtropical; Taiwan: mountainous regions: temperate, northern and central regions: subtropical). The prevailing climate in Germany and the EU is the Cfb climate (MacLeod and Korvcinska, 2019).
If no, are host plants present in protected cultivation?	Not relevant.
Expected damage in the PRA area	Damage is very likely to be expected. <i>Homona magnanima</i> is an economically important tea pest in its area of distribution (e.g. Lee et al., 2020). The larvae's webbing together of leaves with subsequent feeding on the mesophyll and their massive feeding activity cause severe damage to the leaves and young shoots of the host plants. This results in leaf dieback, defoliation and crop loss. The economic damage limit for <i>H. magnanima</i> in tea fields was determined to be 4 larvae/m ² (CABI, 2020, with reference to other sources). According to CABI (2020), <i>H. magnanima</i> does not attack the fruits of trees, but there are photos of the larvae infesting persimmons and grapes (Meijerman and Ulenberg, 2000) that contradict this statement. <i>Homona magnanima</i> has also been shown to occur in outdoor avocado cultivation in Kagoshima (Kyushu, Japan, subtropical climate) – the larvae prefer to feed on fruits, flower stalks and shoots and can cause severe fruit damage (Nishi et al., 2019). Australia regulates the moth as a quarantine pest, also pointing out the ability of the larvae to chew through protective bags to reach fruit (AQIS, 1998.

. .

.

Express Pest Risk Analysis	Homona magnanima Diakonoff
	Department of Agriculture, Water and the Environment, 2021).
	Furthermore, according to the Nara Prefectural Agricultural Experiment Station (1975), <i>H. magnanima</i> is the most common lepidopteran pest on <i>Podocarpus macrophyllus</i> . The infestation prevents the growth of new shoots and causes significant damage to young trees. Lin et al., 2022 describe damage to <i>Ginkgo biloba</i> .
	The EU has no significant tea-growing areas. However, damage could be caused to a large number of other host plants and, due to the absence of the most important host plant, there is a risk that these other host plants would be more severely damaged than in the current distribution areas of the Oriental tea tortrix, where tea is grown in large quantities. In Japan, the damage is most severe from July to August, and in warm regions, it continues into the winter (Nara Prefecture Agricultural Research Station, 1975). Risk of introduction via bonsai: even if no significant damage to <i>Pinus</i> is known, there is still a high risk that <i>H. magnanima</i>
	important host plants.
Relevance for organic farming	There are various management options that could be applied in organic farming (pheromones, but see below, Mochizuki et al., 2001, natural enemies, granulosis virus; Nakai, 2009, Sato et al., 1980), but they are not suitable for achieving complete eradication.
Is an infestation easy to eradicate?	In principle, eradication with insecticides is possible if the moth is not yet widespread and the abundance is low. However, <i>H. magnanima</i> has developed resistance to a number of insecticides (AQIS, 1998, Nakai, 2009). For this reason, IPM measures are used in infested areas. Control with the help of pheromone traps is also possible; in Japan, damage was kept at a low level until the late 1980s. However, after 12 years of use in tea plantations in Shizuoka Prefecture, Japan, the effectiveness decreased significantly. Here too, resistance to the pheromone has probably developed (Mochizuki et al., 2001).
Remarks	This risk analysis is subject to a medium degree of uncertainty because damage caused by <i>H. magnanima</i> has so far been reported mainly on tea plants and it is not clear to what extent significant damage to other host plants could

.

Express Pest Risk Analysis	Homona magnanima Diakonoff
	occur in a new area of distribution. However, significant damage was also found recently on avocados, grapes and kaki (Nishi et al., 2019). More recent literature (Lin et al., 2022) also describes damage to <i>Ginkgo biloba</i> , olive trees (Choi et al., 2023) and <i>Gardenia jasminoides</i> (Kanaya et al. 2024). In addition, although no tea is grown there, Australia has regulated the species as a quarantine pest (AQIS, 1998, Department of Agriculture, Water and the Environment, 2021). Control is becoming increasingly difficult (due to the development of resistance both to insecticides and pheromones. Damage to host plants in the EU cannot be ruled out. For these reasons, <i>H. magnanima</i> is classified as a potential quarantine pest. <i>Homona magnanima</i> is used to study so-called "male killing" (MK). MK refers to the killing of male offspring by microorganisms during embryogenesis. It is a strategy for improving the fitness of the microorganisms. Two embryonic MK bacteria, namely <i>Wolbachia</i> (Alphaproteobacteria) and <i>Spiroplasma</i> (Mollicutes), as well as a larval MK virus, Osugoroshi virus (OGV; Partitiviridae), have been identified in the moth (see e.g. Arai et al., 2023).
Literature	 AQIS (1998): Final Import Risk Analysis of the Importation of Fruit of Fuji Apple (Malus pumila Miller var. domestica Schneider) from Aomori Prefecture in Japan. Australian Quarantine and Inspection Service. 61 S. Available online: https://www.agriculture.gov.au/sites/default/files/sitecollection documents/ba/plant/ungroupeddocs/fapplefira.doc. Accessed on: 03.06.2024. ARAI, H., TAKAMATSU, T., LIN, S. R., MIZUTANI, T., OMATSU, T., KATAYAMA, Y., INOUE, M. N. (2023): Diverse Molecular Mechanisms Underlying Microbe-Inducing Male Killing in the Moth Homona magnanima. Applied and Environmental Microbiology, e02095-22. AUSTRALIAN GOVERNMENT (2021): Final Pest Risk Analysis for Cut Flower and Foliage Imports—Part 2. Department of Agriculture, Water and the Environment. CC BY 3.0. Available online: https://www.agriculture.gov.au/sites/default/files/documents/fi nal-report-cut-flowers-foliage-imports-part-2.pdf. Accessed on: 03.06.2024. CABI (2020): Datasheet Homona magnanima (oriental tea tortrix) Available online:

Express Pest Risk Analysis	Homona magnanima Diakonoff
	https://www.cabidigitallibrary.org/doi/full/10.1079/cabicompen dium.27584. Accessed on: 03.06.2024.
	CHOI, KS., KO, SW., OH, HS., KIM, HJ., KIM, SR., AHN JJ. (2023): Arten von Schädlingen, die in Olivenplantagen auf der Insel Jeju vorkommen. Zeitschrift der Korean Society of Applied Entomology, 62(2), 103-107 (in Korean).
	JINBO, U., ARITA, Y., NAKAJIMA, H., KISHIDA, Y., YAGO, M., OWADA, M. (2014): Moths of Gardens in the Imperial Palace, Tokyo (2009–2013). Memoirs of the National Science Museum, 50, 129-237 (in Japanese).
	KANAYA, S., SAYAMA, K., KIKUCHI, T., KUHARA, Y., SAKATA, M., TANAKA, A MATSUNAGA, M. (2024): A literature survey of gardenia pests and insect pests found on gardenia and gardenia in the Tateyama Experimental Forest of the Kyushu Branch of the Forestry and Forest Products Research Institute, 23(1), 35-47 (in Japanese).
	NARA PREFECTURE AGRICULTURAL EXPERIMENTAL STATION (1975): Damage to trees. Lepidoptera pests and their damage. Plant Protection, Vol. 29 No. 9 (in Japanese). Available online: https://www.jppn.ne.jp/jpp/s_mokuji/ 19750903.pdf. Accessed on 03.06.2024.
	LEE, S. H., LIN, S. R., CHEN, S. F. (2020): Identification of tea foliar diseases and pest damage under practical field conditions using a convolutional neural network. Plant Pathology, 69 (9), 1731-1739.
	LIN, H. Y., LI, W. H., LIN, C. F., WU, H. R., ZHAO, Y. P. (2022): International biological flora: <i>Ginkgo biloba</i> . Journal of Ecology, 110(4), 951-982.
	MACLEOD, A., KORYCINSKA, A. (2019): Detailing Köppen– Geiger climate zones at sub-national to continental scale: a resource for pest risk analysis. EPPO Bulletin, 49(1), 73-82.
	MAO, H., KUNIMI, Y. (1990): Effects of temperature and photoperiod on development of the Oriental tea tortrix, <i>Homona magnanima</i> Diakonoff (Lepidoptera: Tortricidae). Journal of the Japanese Society of Applied Animal Entomology (Oidokon). Vol. 34, No. 2:127-130 (in Japanese).
	MEIJERMAN, L., ULENBERG, S.A. (2000): <i>Homona magnanima</i> . Eurasian Tortricidae 2.0. Arthropods of Economic Importance: Eurasian Tortricidae. An illustrated identification guide and information source, Available online: https://eurasian-

Express Pest Risk Analysis	Homona magnanima Diakonoff
	tortricidae.linnaeus.naturalis.nl/linnaeus_ng/app/views/specie s/taxon.php?id=115663&epi=164. Accessed on: 03.06.2024.
	MOCHIZUKI, F., FUKUMOTO, T., NOGUCHI, H., SUGIE, H. (2001): Resistance to a communication disruptant with a sex pheromone in two tea pests. Aroma Research, 2(2), 185-189.
	NAKAI, M. (2009): Biological control of tortricidae in tea fields in Japan using insect viruses and parasitoids. Virologica Sinica, 24(4), 323-332.
	NISHI, N., MIYAJI, K., FUKUMOTO, T., HAMASHIMA, A., UCHINO, K., KISAKI, K.,, SAKAMAKI, Y. (2019): Arthropod pests of the avocado plant in Kagoshima prefecture, Japan. Kyushu Plant Protection Research, 65, 24-29 (in Japanese).
	NOGUCHI, H. (1990): Studies on comparative physiology of mating behaviors and sex pheromones of the tea tortrix moth and the smaller tea tortrix moth. Bull. Natl. Inst. Agro-Environ. Sci. 7: 73–138 (in Japanese).
	NOHIRA, T., AWANO, M. (1977): Diseases and insect pests of greening trees in Gifu Prefecture and some pest control methods. Gifu Prefectural Forestry Center Report, 5, 15–30 (in Japanese).Available online: https://www.forest.rd.pref.gifu.lg.jp/pdf/bull0502.pdf. Accessed on 03.06.2024.
	RAZOWSKI, J. (2008): Tortricidae (Lepidoptera) from Vietnam in the collection of the Berlin Museum. 4. Choristoneura, Homona and Meridemis. Polish Journal of Entomology. 77 (3): 233–243.
	SATO, T., OHO, N., KODOMARI, S. (1980): A granulosis virus of the tea tortrix, Homona magnanima Diaknoff (Lepidoptera: Tortricidae): its pathogenicity and mass-production method. Applied Entomology and Zoology, 15 (4), 409-415.
	WENLING, H. (2019): Occurrence, Damage and Control Measures of Main Forest Pests in Sanyuan District, Sanming City. Plant Diseases and Pests, 10(2), 27-40.
	YAMAGUCHI, T., KIRITANI, K., MATSUHIRA, K., FUKUDA, K. (2001): The influence of unusual hot weather on the occurrence of several arthropod crop pests. Japanese Journal of Applied Entomology and Zoology, 45(1), 1-7 (in Japanese).
	YASUDA, T. (1972): The Tortricinae and Sparganothinae of Japan (Lepidoptera: Tortricidae) (Part 1). Bulletin of the

.

Express Pest Risk Analysis	Homona magnanima Diakonoff
	University of Osaka Prefecture. Ser. B, Agriculture and biology, 24, 53-134.

Figures 1-4: Larvae of Homona magnanima

Figure 1. Larva of the Oriental tea tortrix (*Homona magnanima*). Size representation, length 26 mm; diameter approx. 5 mm. (Photo: Olaf Zimmermann, LTZ Augustenberg)

Figure 2. Larva of the Oriental tea tortrix (*Homona magnanima*). Damage to yew (*Taxus* sp.) caused by larval feeding, webs (Photo: Olaf Zimmermann, LTZ Augustenberg, Germany).

Figure 3. Larva of the Oriental tea tortrix (*Homona magnanima*) on yew (Taxus sp.) Larval head with mouthparts (Photo: Olaf Zimmermann, LTZ Augustenberg, Germany)

Figure 4. Larva of the Oriental tea tortrix (*Homona magnanima*) on Japanese black pine (*Pinus thunbergii*). (Photo: Christian Heinendirk, Landwirtschaftskammer NRW, Germany)