

-PRA¹ for *Pochazia shantungensis*

– Occurrence –

Prepared by: Julius Kühn-Institute, Institute for national and international Plant Health; prepared by: Dr. Gritta Schrader; on: 07-12-2021.

Initiation.	Occurrence on Ca	ataina in the Federal	State Baden-Württemberg
minuation.		<i>ataipa</i> in the reactai	otate Daden=Wurtternberg

Express PRA	Pochazia	shantungensis (Cho	u & Lu, 1977)
Phytosanitary risk for Germany	high 🗌 🛛 Iow – medium 🖂		dium 🖂
Phytosanitary risk for EU- Member States	high 🔀	medium 🗌	
Certainty of the assessment	high 🗌	medium 🖂	low 🗌
Conclusion	to China and pres finding in the Fede not yet confirmed) 2018. <i>Pochazia si</i>	d cicada <i>Pochazia shantu</i> umably, does not yet occ eral State Baden-Württer). In the EU, it is detected <i>hantungensis</i> is not listed 019/2072 but is included	cur in Germany (first nberg, establishment I in France since I in the Annexes of
	EPPO indicates 2 families. Economi	<i>gensis</i> infests a wide ran 00 host plant species fro cally important hosts are peach, and kaki) as well	m very different fruit species (e.g.
	establish outdoors conditions are sui	letely ruled out that <i>P. sh</i> s in Germany in warmer r table only to a very limite subtropical, south Europe ly.	regions, but climatic d extent. An
	plants, <i>P. shantur</i>	mage potential for variou <i>igensis</i> poses a significai thern/subtropical Membe	nt phytosanitary risk
	<i>shantungensis</i> po Germany and mos can cause signific	analysis, it is assumed t ssibly can establish in a f st probably in southern M ant damage. Thus, the ir adicated according to Arti	few regions in lember States and nfestation must be
Taxonomy ² , common name, synonyms		ra, Auchenorrhyncha, Rio <i>ngensi</i> s (Chou & Lu, 197	

Express PRA	Pochazia shantungensis (Chou & Lu, 1977)
EPPO Code	POCZSH
Does a relevant earlier PRA exist?	No, only a short assessment by EFSA as part of a commodity risk assessment for <i>Robinia pseudoacacia</i> and a short assessment by EPPO for the Alert List (EFSA, 2021, EPPO, 2021). In both documents, the brown winged cicada is classified as alarming.
Biology	In South Korea, one generation per year was observed, two generations in China. The pest overwinters in egg-stage on trees. In South Korea, the larvae emerge from May on. Obviously, the nymphs favour rather herbaceous plants than trees. Adults were observed from July on, in South Korea, the new "hibernation eggs" are usually laid until end of August/September. Adults are approx. 15 mm long (EPPO, 2021, Baek et al. 2019).
Is the pest a vector? ³	Unknown.
Is a vector needed? ⁴	No.
Host plants	<i>Pochazia shantungensis</i> is very polyphagous. EPPO GD (2021) lists more than 130 host plants, according to Bourgoin et al. (2020) more than 200 host plants (81 families, 157 genera, 208 species) are known. Amongst that are maple species, apple, eggplant, ginkgo, ailanthus, cornel, blueberry, Japanese cherry, kaki, privet, paprika, peach, rhododendron, <i>Rubus</i> -species, willow species, sunflower.
Symptoms⁵	The insect causes damage through sucking of plant sap. Phloem and xylem are destroyed through the sucking activity of the adult females, twigs dry up as a consequence of oviposition into the tissue. For protection (hibernation), eggs are covered with waxy filaments. Furthermore sooty mildew develops on the honeydew that is left by <i>P. shantungensis</i> , the trees are weakened (Choi et al., 2011 (translated from Korean), EFSA, 2021).
Presence of the host plants in Germany ⁶	A large number of the above-mentioned species is present in Germany, which are also economically important plant species (as well fruit and crop species as ornamentals).
Presence of the host plants in the Member States ⁷	A large number of the above-mentioned species is present in EU member states, that are also economically important plant species (as well fruit and crop species as ornamentals).

Express PRA	Pochazia shantungensis (Chou & Lu, 1977)
Known infested areas ⁸	China, South Korea, Turkey, France (EPPO GD, 2021). The infested plant came from Italy, therefore the presence in Italy cannot be ruled out. However, the origin of the plant has to be traced back.
Pathways ⁹	Primarily, the eggs are moved via plants for planting of host plant species from countries where <i>P. shantungensis</i> is present. As eggs mostly are laid on young twigs, wood presumably does not serve as a pathway (EPPO, 2021).
	Eggs can be present on bare-rooted plants and (pot) plants. Larvae can be present on the leaves of (pot) plants (EFSA, 2021).
Natural spread ¹⁰	Only little information is available in respect to natural spread. Adults can fly and have the highest mobility of all development stages, but also the nymph stages are mobile (EPPO, 2021). Due to the very fast spread in South Korea (Baek et al., 2019) an effective natural spread is expected if climatic conditions are suitable. Therefore, an eradication in an early stage is very important.
Expected establishment and spread in Germany ¹¹	Due to the current distribution of <i>P. shantungensis</i> , it is assumed that the climate in Germany is less or not all suitable for an establishment of the cicada. Revised climatic zones according to Köppen-Geiger (Kottek et al. 2006; explanation see below), where the brown winged cicada is present (Chou and Lu, 1977, Baek et al., 2019, Hizal et al. 2019, Bourgoin et al. 2020), are Cfa (Zhejiang, China; partially South Korea), Dwa (partially South Korea), Csa (Marmara, Turkey), and Csb (France, Alpes- Maritimes). An establishment in Biberach, Federal State Baden- Württemberg, where the cicada was found is not yet confirmed. Biberach has the classification Cfb. For orientation (Köppen, 1918, Kottek et al., 2006): Cfa: humid subtropical climate, coldest month between 18 and -2°C; constantly humid (sufficient rain or snow, year-round); average temperature of the warmest month above 22°C; subtropical "east side climate". Cfb: temperate oceanic climate, coldest month between 18 and - 2°C; constantly humid (sufficient rain or snow, year-round); average temperature of the warmest month above 22°C; at least 4 months above 10°C; "ocean climate".

Pochazia shantungensis (Chou & Lu, 1977)
Csa: dry hot summer climate, coldest month between 18 and - 2°C; the driest period in summer; average temperature of the warmest month above 22°C; "hot Mediterranean climate".
Csb: dry warm summer climate, coldest month between 18 and - 2°C; the driest period in summer; average temperature of the warmest months below 22°C; at least 4 months above 10°C; "warm Mediterranean climate".
Dwa: dry winter hot summer climate ("snow climate"), coldest month below -2°C, warmest month above 10°C; driest period in winter, average temperature of the warmest month above 22°C, "humid continental climate". In Europe this classification does not occur.
As climate change progresses, climatic suitability for the cicada in Germany may increase.
Baek et al. (2019) found in the frame of climate models (CLIMEX und MaxEnt) that the maximum temperature of the warmest months was the most important parameter for the prediction of the occurrence of <i>P. shantungensis</i> , for South Korea, this is August. This corresponds to the time before oviposition. The oviposition behaviour presumably consumes a large amount of energy. Baek et al. (2019) hypothesize that for this reason, the high temperatures prior to oviposition are needed to increase energy through feeding and to promote ovarian development.
A multitude of hostplants is present.
In southern, subtropical EU-Member States, establishment is to be expected, in particular in regions with the Köppen-Geiger- classification Cfa, Csa and Csb (Köppen, 1918, Kottek et al. 2006, classification assignment see MacLeod and Korycinska, 2019). The Cfa climate can be found in northern Italy, at the Adriatic coast in Italy, Slovenia and Croatia, in the border regions between Romania and Bulgaria and in small parts in northern Greece, in parts of southern France, in southern Hungary, in northern Spain. Hot Mediterranean climate (Csa) can be found especially in Portugal, Spain, Italy (also Sicily), in the South of France (also Corse), Greece and in small parts of Bulgaria, Croatia and Cyprus. Regions with warm Mediterranean climate (Csb) are parts of Bulgaria, Croatia, Cyprus, Greece, Italy, Portugal and Spain. A multitude of hostplants is present.

Express PRA	Pochazia shantungensis (Chou & Lu, 1977)
Known damage in infested areas ¹³	The brown winged cicada causes direct damage via the sucking of plant sap as well as through injuries on young twigs caused by the oviposition of the females. Furthermore, damage is caused indirectly through the development of sooty mildew on the leaves as a consequence of the secretion of honeydew. In South Korea, insecticides are used for the control of the egg stages in orchards. Overall, populations of <i>P. shantungensis</i> in agricultural areas have increased by over 100% each year from 2015 to 2017 and are causing severe economic damage. In China, the cicada is detected as a significant economic polyphagous pest especially on fruit plants and roadside trees in the province Zhejiang (Bourgoin et al. 2020, EPPO, 2021).
Limitation of the endangered area in Germany	From the current point of view, the climatic conditions for the establishment of <i>P. shantungensis</i> are given at most only locally, in regions with higher temperatures (see also remarks).
Expected damage in endangered area in Germany ¹⁴	At present, damage would be minor due to the insufficient climatic suitability.
Expected damage in endangered areas in Member States ¹⁵	EPPO (2021) and EFSA (2021) both conclude that <i>P.</i> <i>shantungensis</i> could pose a phytosanitary risk for the EU resp. the EPPO region. This would most probably primarily affect Member States with a subtropical climate (see above).
Control and measures ¹⁶	An infestation can be detected already in an early stage and presumably, can still be successfully controlled at this time (EFSA, 2021). In South Korea, various essential oils as an insecticide were researched, thymol- and peppermint-oil- and <i>Valeriana fauriei</i> -oil-formulations were used successfully (Ryu et al. 2016, Park et al., 2017, Lee et al., 2018). Furthermore, the number of eggs could be reduced by use of yellow traps (Kim et al., 2016). Baek et al. (2019) state that measures against <i>P. shantungensis</i> are necessary to minimize economic effects and to slow down spread.
Detection and diagnosis ¹⁷	A morphologic description of the species, including photos and an identification key, is available at Rahman et al. (2012), a differentiation from <i>Pochazia albomaculata</i> can also be found there.
Remarks	For better assessment of the endangered areas, a climate modelling for Germany and the EU would be useful. Currently, it appears that subtropical Member States in particular are at risk,

Express PRA	Pochazia shantungensis (Chou & Lu, 1977)
	but a prognosis should be made as to the extent to which the climatic suitability for establishment in other Member States, including Germany, could change with ongoing climate change. The information in Baek et al. (2019) can be used for climate modelling.
Literature	BAEK, S., KIM MJ., LEE, J.H. (2019): Current and future distribution of <i>Ricania shantungensis</i> (Hemiptera: Ricaniidae) in Korea: Application of spatial analysis to select relevant environmental variables for MaxEnt and CLIMEX Modeling. Forests 10, 490. https://doi.org/10.3390/f10060490.
	BOURGOIN, T., GROS, P., STROINSKI, A. (2020): <i>Pochazia</i> <i>shantungensis</i> (Chou & Lu, 1977), an important Asiatic invasive pest on fruit trees, first time reported from France (Hemiptera, Fulgoromorpha, Ricaniidae). Bulletin de la Société Entomologique de France 125, 271–272.
	CHOI, Y. S., HWANG, I. S., KANG, T. J., LIM, J. R., CHOE, K. R. (2011): Oviposition characteristics of <i>Ricania</i> sp. (Homoptera: Ricaniidae), a new fruit pest. Korean journal of applied entomology, 50(4), 367-372 (Korean, English summary and in parts, translated with Google translator).
	CHOU, I., LU, C. (1977): On the Chinese Ricaniidae with descriptions of eight new species. Acta Entomologica Sinica 20(3), 314-322 (Chinese, English summary).
	EFSA PLH PANEL (2021): Scientific Opinion on the commodity risk assessment of <i>Robinia pseudoacacia</i> plants from Turkey. EFSA Journal 19(5): 6568, 54 pages. https://doi.org/10.2903/j.efsa.2021.6568.
	EPPO (2021): <i>Pochazia shantungensis</i> (Hemiptera: Ricaniidae) EPPO RS 2021/130, online available: https://www.eppo.int/ACTIVITIES/plant_quarantine/alert_list_in sects/pochazia_shantungensis. Accessed on 26-11-2021.
	EPPO GD (2021): <i>Pochazia shantungensis</i> (POCZSH), EPPO Global Database, online available: https://gd.eppo.int/taxon/POCZSH, accessed on 25-11-2021
	HIZAL, E., OZTEMIZ, S., GJONOV, I. (2019): <i>Ricania shantungensis</i> Chou & Lu 1977 (Hemiptera: Fulgoromorpha: Ricaniidae) a new invasive insect species in European Turkey. Fresenius Environmental Bulletin 28 (12A), 9816-9820.
	KIM, D. H., KIM, H. H., YANG, C. Y., KANG, T. J., YOON, J. B., SEO, M. H. (2016): Characteristic of oviposition and effect of density suppression by yellow-colored sticky trap on <i>Ricania</i>

Express PRA	Pochazia shantungensis (Chou & Lu, 1977)
	<i>shantungensis</i> (Hemiptera: Ricaniidae) in blueberry. The Korean Journal of Pesticide Science, 20(4), 281-285 (Korean, English summary).
	KÖPPEN, W. (1918): Klassifikation der Klimate. Petermann's geographische Mitteilungen. September/Oktoberheft, 193-203.
	KOTTEK, M., GRIESER, J., BECK, C., RUDOLF, B., RUBEL, F. (2006): World map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift, Vol. 15, No. 3, 259-263
	LEE, S. K., JEON, S. W., JEONG, I. H., PARK, S. K., LEE, S. B., LEE, H. S., PARK, B. (2018): Insecticidal activity of <i>Valeriana</i> <i>fauriei</i> oils extracted by three different methods against <i>Ricania</i> <i>shantungensis</i> . Journal of Applied Biological Chemistry, 61(1), 47-50 (Korean, English summary).
	MACLEOD, A., KORYCINSKA, A. (2019): Detailing Köppen–Geiger climate zones at sub-national to continental scale: a resource for pest risk analysis. EPPO Bulletin, 49(1), 73-82.
	PARK, J. H., JEON, Y. J., LEE, C. H., CHUNG, N., LEE, H. S. (2017): Insecticidal toxicities of carvacrol and thymol derived from <i>Thymus vulgaris</i> Lin. against <i>Pochazia shantungensis</i> Chou & Lu., newly recorded pest. Scientific reports, 7(1), 1-7.
	RAHMAN, M.A., KWON, YJ., SUH, SJ., YOUN YN., JO, SH. (2012): The genus <i>Pochazia</i> Amyot and Serville (Hemiptera: Ricaniidae) from Korea, with a newly recorded species. Journal of Entomology 9(5), 239-247. https://doi.org/10.3923/je.2012.239.247
	RYU, T. H., KWON, H. R., YU, Y. M., YOUN, Y. N. (2016): Repellent effects of peppermint oil against <i>Pochazia</i> <i>shantungensis</i> (Hemiptera: ricaniidae). Korean journal of applied entomology, 55(3), 223-233 (Korean, English summary).

.

Remarks

Erläuterungen

- ¹ Compilation of the most important directly available information allowing a first preliminary estimation of the phytosanitary risk. This short assessment is necessary for the decision on a notification to EU and EPPO as well as the preparation of a complete risk analysis, for the information of the countries and as a basis for the possible initiation of eradication measures. Regarding the phytosanitary risk especially the possibility of the introduction to and spread in Germany and the Member States as well as possible damage are taken into account.
- ² Taxonomic classification also subspecies in the case that the taxonomical classification is uncertain the JKI-scientist initiates the taxonomic classification as far as possible.
- ³ If so, which organism (which organisms) is (are) transmitted and does it (do they) occur in Germany / the MS?
- ⁴ If so, which organism serves as a vector and does it occur in Germany / the MS?
- ⁵ Description of the pattern of damage and the severity of the symptoms/damage on the different host plants
- ⁶ Presence of host plants in protected cultivation, open field, amenity plantings, forest......; where, in which regions are the host plants present and to which extent? How important are the host plants (economical, ecological, ...)?
- ⁷ Presence of the host plants in protected cultivation, open field, amenity plantings, forest where, in which regions are the host plants present and to which extent? How important are the host plants (economical, ecological, ...)?, possible origin
- ⁸ E.g. acc. to CABI, EPPO, PQR, EPPO Datasheets.
- ⁹ Which pathways are known for the pest and of which relevance are they in respect to the probability of the spread? Primarily the transport over long distances is meant, normally with infested traded plants, plant products or other contaminated articles. This does not comprise the natural spread resulting from introduction.
- ¹⁰ Which pathways are known for the pest and of which relevance are they in respect of the probability of the spread? In this case the natural spread resulting from introduction is meant.
- ¹¹ Under the given prevalent environmental conditions
- ¹² Under the given prevalent environmental conditions (native areas and areas of introduction)
- ¹³ Description of the economic, ecological/environmental and social damage in the area of origin resp. areas of occurrence up to now
- ¹⁴ Description of the economic, ecological/environmental relevant and social damage to be expected in Germany, as far as possible and required, differentiated between regions
- ¹⁵ Description of economic, ecological/environmental and social damage to be expected in the EU /other Member States, as far as possible and required, differentiated between regions
- ¹⁶ Can the pest be controlled? Which possibilities of control are given? Are plant health measures conducted in respect to this pest (in the areas of current distribution resp. by third countries)?
- ¹⁷ Description of possibilities and methods for detection. Detection by visual inspections? Latency? Uneven distribution in the plant (sampling)?